1. The graphs show how the motion of four objects change with time. The statements describe different motions.

Draw a line or lines from each graph to the description of the motion represented by that graph.
(4 marks)

Motion graphs

Distance

No movement

Distance

Time (s)

Speed
Speed

Time (s)
2. A cyclist waits at a set of traffic lights. The graph shows how her velocity changes after the lights turn green, over a period of time.

2 (a) Calculate the acceleration during the first part of the journey from 0 to 10 seconds. Clearly show your working
$20 \div 10 \quad$ or $\quad(20-0) \div 10$ or $(20-10) \div(10-0)[1$ mark]

$$
\begin{array}{r}
\text { Acceleration }=\ldots \ldots .2 \ldots \ldots . . \mathrm{m} / \mathrm{s} / \mathrm{s}[1 \text { mark] } \\
(2 \text { marks })
\end{array}
$$

2 (b) Calculate the distance travelled for the part of the journey labelled B. Ensure you write the correct units. Clearly show your working

Area of shaded region $=5 \times 20$ [1 mark]
Answer = 100 [1 mark]
units $=m$ or metres [1 mark]

Distance travelled $=$ \qquad 100 m \qquad

2 (c) Compare the motion of the cyclist for part C of the journey with part A .
cyclist is slowing down/decelerating/getting slower [1 mark]
at a faster rate/slowing down faster/more quickly [1 mark]
‘slowing down faster/more quickly' gets 2 marks
3. A toy car makes a short journey. The graph shows how the distance travelled changes with time.

(3) (a) At which point on the graph was the car moving at the fastest speed? 8 to 10 seconds [1 mark] give mark if labelled correctly on the graph
(3) (b) How long did the car stop for?

3 seconds
(3) (c) Calculate the speed of the car for the part of the journey from 8 to 10 seconds.

$$
\begin{aligned}
& 4 \div 2 \text { or }(9-5) \div(10-8)[1 \text { mark] } \\
& 2[2 \text { marks] }
\end{aligned}
$$

Speed $=$ \qquad m / s
(2 marks)

